Thermohydraulic Study of a Flat Plate Heat Pipe by Means of Confocal Microscopy: Application to a 2D Capillary Structure

Author:

Lips Stéphane1,Lefèvre Frédéric1,Bonjour Jocelyn1

Affiliation:

1. Université de Lyon, CNRS, INSA-Lyon, CETHIL, UMR 5008, F-69621, Villeurbanne, France, Université Lyon 1, F-69622, France

Abstract

Thermal and hydrodynamic experimental results of a flat plate heat pipe (FPHP) are presented. The capillary structure is made of crossed grooves machined in a copper plate. The shape of the liquid-vapor interface in this type of capillary structure—that can also be viewed as an array of posts—is studied theoretically and experimentally. A confocal microscope is used to visualize the liquid-vapor interface and thus the capillary pressure field in the system. These hydrodynamic measurements, coupled to temperature measurements on the FPHP wall, are used to estimate the permeability and the equivalent thermal conductivity of the capillary structure filled with methanol or FC72. These parameters are obtained from a comparison between the experimental data and an analytical model. Finally, the model is used to compare the draining capability of crossed grooves with that of longitudinal grooves.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference23 articles.

1. Micro/Mini Heat Pipes for the Cooling of Electronic Devices;Lallemand

2. Thermal Control of Electronic Equipment by Heat Pipes;Groll;Rev. Gen. Therm.

3. Prediction of the Maximum Heat Transfer Capability of Two-Phase Heat Spreaders—Experimental Validation;Rullière;Int. J. Heat Mass Transfer

4. Prediction of the Temperature Field in Flat Plate Heat Pipes With Micro-Grooves—Experimental Validation;Lefèvre;Int. J. Heat Mass Transfer

5. Micro Heat Spreader Enhanced Heat Transfer in MCMs;Shen

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3