Experimental and Modeling Study of C1–C3 Hydrocarbon Ignition in the Presence of Nitric Oxide

Author:

Gokulakrishnan Ponnuthurai1,Fuller Casey C.2,Klassen Michael S.1

Affiliation:

1. Mem. ASME Combustion Science & Engineering, Inc., 8940 Old Annapolis Road., Suite L., Columbia, MD 21045 e-mail:

2. Combustion Science & Engineering, Inc., 8940 Old Annapolis Road., Suite L., Columbia, MD 21045 e-mail:

Abstract

Nitric oxide (NO) produced during combustion will be present in vitiated air used in many devices. An experimental and modeling investigation of the effect of NO on the ignition of C1–C3 hydrocarbon fuels, namely, CH4, C2H4, C2H6, and C3H6, is presented. These molecules are important intermediate species generated during the decomposition of long-chain hydrocarbon fuel components typically present in jet fuels. Moreover, CH4 and C2H6 are major components of natural gas fuels. Although the interaction between NOx and CH4 has been studied extensively, limited experimental work is reported on C2H4, C2H6, and C3H6. As a continuation of previous work with C3H8, ignition delay time (IDT) measurements were obtained using a flow reactor facility with the alkanes (CH4 and C2H6) and olefins (C2H4 and C3H6) at 900 K and 950 K temperatures with 15 mole% and 21 mole% O2. Based on the experimental data, the overall effectiveness of NO in promoting ignition is found to be: CH4 > C3H6 > C3H8 > C2H6 > C2H4. A detailed kinetic mechanism is used for model predictions as well as for reaction path analysis. The reaction between HO2 and NO plays a critical role in promoting the ignition by generating the OH radical. In addition, various important fuel-dependent reaction pathways also promote the ignition. H-atom abstraction by NO2 has significant contribution to the ignition of C2H4 and C2H6, whereas the reaction between NO2 and allyl radical (aC3H5) is an important route for the ignition of C3H6.

Funder

Air Force Research Laboratory

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3