An Analysis of the Time and Temperature Dependence of the Upper Yield Point in Iron

Author:

Bennett P. E.1,Sinclair G. M.1

Affiliation:

1. Department of Theoretical and Applied Mechanics, University of Illinois, Urbana, Ill.

Abstract

The influence of temperature and strain rate on the upper yield point of ingot iron was studied. Torsion tests were conducted using strain rates of 12.5/sec, 0.25/sec, and 0.0001/sec over the temperature range 77 to 525 deg K. The upper yield point showed a rapid increase as the temperature was lowered. An increase in the strain rate also caused an increase in the yield point. An apparent activation energy can be associated with the strain rate and temperature dependence of the yield point. This energy is influenced by stress level, and it appears from the present study that the relationship can be described by an equation of the form ΔH=ΔH¯τ¯−ττ¯b. If this relationship is substituted for ΔH in a modification of the Boltzmann relation, the following result is obtained: logγ˙γ˙1=MΔH¯RT1τ¯−τ1τ¯b1−T1Tτ¯−ττ¯−τ1b. This equation describes the experimental data within ± 3000 psi. The results of this investigation compared with tensile test data from other investigators confirm that state of stress is an important factor in determining whether a material will behave in a ductile or brittle fashion.

Publisher

ASME International

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3