Affiliation:
1. Department of Chemical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
2. Department of Chemical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India e-mail:
Abstract
In this paper, an economical and simple procedure was adopted for the fabrication of chemically crosslinked polyvinyl alcohol (PVA)-based KOH-doped alkaline membrane for the use in an alkaline direct ethanol fuel cell (ADEFC). The membrane parameters, namely, water uptake, KOH uptake, and ionic conductivity were systematically evaluated. The ionic conductivity of the synthesized membrane was in the order of 9 × 10−3 S/cm. The performance of the synthesized alkaline membrane is evaluated in a single ADEFC. Commercial Pt–Ru (30 wt %: 15 wt %)/C and Pt (40 wt %)/high surface area carbon (CHSA) from Alfa Aesar, Haverhill, MA, were used for anode and cathode, respectively. The performance of the membrane was further evaluated in a single cell using different grades of membranes containing different glutaraldehyde (GA) concentration, anode and cathode electrocatalyst loading, ethanol concentration, and KOH concentration. The maximum open circuit voltage (OCV) of 0.73 V was obtained at a temperature of 35 °C for anode feed containing 2 M ethanol and 1 M KOH for the membrane crosslinked with 2.5 wt % glutaraldehyde doped with 6 M KOH. The maximum power density of 4.15 mW/cm2 at a current density of 20.69 mA/cm2 was obtained for the same condition. The optimum electrocatalyst loading was 1 mg/cm2 of Pt-Ru/C at the anode and 1 mg/cm2 of Pt/CHSA at the cathode. The performance of KOH-doped chemically crosslinked PVA membrane was comparable with the published literature.
Subject
Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献