A Study on Synthesis of Chemical Crosslinked Polyvinyl Alcohol-Based Alkaline Membrane for the Use in Low-Temperature Alkaline Direct Ethanol Fuel Cell

Author:

Gupta Uday Kumar1,Pramanik Hiralal2

Affiliation:

1. Department of Chemical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India

2. Department of Chemical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India e-mail:

Abstract

In this paper, an economical and simple procedure was adopted for the fabrication of chemically crosslinked polyvinyl alcohol (PVA)-based KOH-doped alkaline membrane for the use in an alkaline direct ethanol fuel cell (ADEFC). The membrane parameters, namely, water uptake, KOH uptake, and ionic conductivity were systematically evaluated. The ionic conductivity of the synthesized membrane was in the order of 9 × 10−3 S/cm. The performance of the synthesized alkaline membrane is evaluated in a single ADEFC. Commercial Pt–Ru (30 wt %: 15 wt %)/C and Pt (40 wt %)/high surface area carbon (CHSA) from Alfa Aesar, Haverhill, MA, were used for anode and cathode, respectively. The performance of the membrane was further evaluated in a single cell using different grades of membranes containing different glutaraldehyde (GA) concentration, anode and cathode electrocatalyst loading, ethanol concentration, and KOH concentration. The maximum open circuit voltage (OCV) of 0.73 V was obtained at a temperature of 35 °C for anode feed containing 2 M ethanol and 1 M KOH for the membrane crosslinked with 2.5 wt % glutaraldehyde doped with 6 M KOH. The maximum power density of 4.15 mW/cm2 at a current density of 20.69 mA/cm2 was obtained for the same condition. The optimum electrocatalyst loading was 1 mg/cm2 of Pt-Ru/C at the anode and 1 mg/cm2 of Pt/CHSA at the cathode. The performance of KOH-doped chemically crosslinked PVA membrane was comparable with the published literature.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3