Analysis of a Micro Gas Turbine Fed by Natural Gas and Synthesis Gas: MGT Test Bench and Combustor CFD Analysis

Author:

Cadorin M.1,Pinelli M.1,Vaccari A.1,Calabria R.2,Chiariello F.2,Massoli P.2,Bianchi E.3

Affiliation:

1. Dipartimento di Ingegneria, Università di Ferrara, Ferrara, 44122, Italy

2. Istituto Motori - CNR, Napoli, 80125, Italy

3. Turbec S.p.A., Corporeno di Cento (FE), 44040, Italy

Abstract

In recent years, the interest in the research on energy production systems fed by biofuels has increased. Gaseous fuels obtained through biomass conversion processes such as gasification, pyrolysis and pyrogasification are generally defined as synthesis gas (syngas). The use of synthesis gas in small-size energy systems, such as those used for distributed micro-cogeneration, has not yet reached a level of technological maturity that could allow a large market diffusion. For this reason, further analyses (both experimental and numerical) have to be carried out to allow these technologies to achieve performance and reliability typical of established technologies based on traditional fuels. In this paper, a numerical analysis of a combustor of a 100-kW micro gas turbine fed by natural gas and biomass-derived synthesis gas is presented. The work has been developed in the framework of a collaboration between the Engineering Department of the University of Ferrara, the Istituto Motori - CNR (Napoli), and Turbec S.p A. of Corporeno di Cento (FE). The main features of the micro gas turbine Turbec T100, located at the Istituto Motori - CNR, are firstly described. A decompression and distribution system allows the feeding of the micro gas turbine with gaseous fuels characterized by different compositions. Moreover, a system of remote monitoring and control together with a data transfer system has been developed in order to set the operative parameters of the machine. The results of the tests performed under different operating conditions are then presented. Subsequently, the paper presents the numerical analysis of a model of the micro gas turbine combustor. The combustor model is validated against manufacturer performance data and experimental data with respect to steady state performance, i.e., average outlet temperature and emission levels. A sensitivity analysis on the model capability to simulate different operating conditions is then performed. The combustor model is used to simulate the combustion of a syngas, composed of different ratios of hydrogen, carbon monoxide, methane, carbon dioxide and water. The results in terms of flame displacement, temperature and emission distribution and values are analyzed and compared to the natural gas simulations. Finally, some simple modifications to the combustion chamber are proposed and simulated both with natural gas and syngas feeding.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3