Numerical and Experimental Investigation of a Multiple Air Jet Cooling System for Application in a Solar Thermal Receiver

Author:

Röger M.1,Buck R.1,Müller-Steinhagen H.1

Affiliation:

1. Institute of Technical Thermodynamics, German Aerospace Centre (DLR), Pfaffenwaldring 38-40, D-70569 Stuttgart, Germany

Abstract

Abstract The transparent quartz glass window of a high temperature solar receiver (1000°C air outlet temperature, 15bars) has to be protected from overheating. The window is an axially symmetric part that can be approximated by a hemisphere with a cylindrical extension (diameter 0.31m, height 0.42m). The cooling is accomplished by impinging several air jets onto the concave window surface. Due to concentrated solar radiation, the air supply nozzles can only be installed at the circumference of the cylindrical extension. Symmetric configurations with six or nine nozzles, equally distributed around the window circumference, are examined. A second configuration generates a swirl in the window cavity by inclining the nozzles. In a third, asymmetric configuration, only nozzles on one side are simultaneously charged with mass flow, while a spatial homogenization of heat transfer is reached by periodically modulating the air flows with time. Computational fluid dynamics (CFD) calculations and laboratory measurements of the heat transfer have been carried out. In the performed 3-D simulations, the realizable k-ε model, the k-ω model, and the SST-k-ω model are compared. For measuring the heat transfer coefficient, a periodic-transient measurement technique with high spatial resolution is used. For the application of cooling of the solar receiver window, the jet cooling system with periodically modulated air flows is identified as the best solution.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference26 articles.

1. Solar Power Plants

2. Cost Optimized Solar Gas Turbine Cycles using Volumetric Air Receiver Technology;Schwarzbözl

3. Solar-Hybrid Gas Turbine-based Power Tower Systems (REFOS);Buck;ASME J. Sol. Energy Eng.

4. Receiver for Solar-Hybrid Gas Turbine and CC Systems (REFOS);Buck

5. Solar-Hybrid Gas Turbine Power System;Sugarmen

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3