Pseudoelasticity of Single Crystalline Cu Nanowires Through Reversible Lattice Reorientations

Author:

Liang Wuwei1,Zhou Min1

Affiliation:

1. The George W. Woodruff School of Mechanical Engineering Georgia Institute of Technology, Atlanta, GA 30332-0405 USA

Abstract

Molecular dynamics simulations are carried out to analyze the structure and mechanical behavior of Cu nanowires with lateral dimensions of 1.45–2.89 nm. The calculations simulate the formation of nanowires through a “top-down” fabrication process by “slicing” square columns of atoms from single-crystalline bulk Cu along the [001], [010], and [100] directions and by allowing them to undergo controlled relaxation which involves the reorientation of the initial configuration with a ⟨001⟩ axis and {001} surfaces into a new configuration with a ⟨110⟩ axis and {111} lateral surfaces. The propagation of twin planes is primarily responsible for the lattice rotation. The transformed structure is the same as what has been observed experimentally in Cu nanowires. A pseudoelastic behavior driven by the high surface-to-volume ratio and surface stress at the nanoscale is observed for the transformed wires. Specifically, the relaxed wires undergo a reverse transformation to recover the configuration it possessed as part of the bulk crystal prior to relaxation when tensile loading with sufficient magnitude is applied. The reverse transformation progresses with the propagation of a single twin boundary in reverse to that observed during relaxation. This process has the diffusionless nature and the invariant-plane strain of a martensitic transformation and is similar to those in shape memory alloys in phenomenology. The reversibility of the relaxation and loading processes endows the nanowires with the ability for pseudoelastic elongations of up to 41% in reversible axial strain which is well beyond the yield strain of the approximately 0.25% of bulk Cu and the recoverable strains on the order of 8% of most bulk shape memory materials. The existence of the pseudoelasticity observed in the single-crystalline, metallic nanowires here is size and temperature dependent. At 300 K, this effect is observed in wires with lateral dimensions equal to or smaller than 1.81×1.81nm. As temperature increases, the critical wire size for observing this effect increases. This temperature dependence gives rise to a novel shape memory effect to Cu nanowires not seen in bulk Cu.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 89 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3