Affiliation:
1. Department of Mechanical Engineering, University of Maryland, College Park, MD 20742
Abstract
Direct spraying of dielectric liquids has been shown to be an effective method of cooling high-power electronics. Recent studies have illustrated that even higher heat transfer can be obtained by adding extended structures, particularly straight fins, to the heated surface. In the current work, spray cooling of high-aspect-ratio open microchannels was explored, which substantially increases the total surface area and allows more residence time for the incoming liquid to be heated by the wall. Five such heat sinks were constructed, and their thermal performance was investigated. These heat sinks featured a projected area of 1.41×1.41cm2, channel width of 360μm, a fin width of 500μm, and fin lengths of 0.25mm, 0.50mm, 1.0mm, 3.0mm, and 5.0mm. The five enhanced surfaces and a flat surface with the same projected area were sprayed with a full cone nozzle using PF-5060 at 30°C and nozzle pressure differences from 1.36–4.08atm(69–121ml∕min). In all cases, the enhanced surfaces improved thermal performance compared to the flat surface. Longer fins were found to outperform shorter ones in the single-phase regime. Adding fins also resulted in the onset of two-phase effects (and higher-heat transfer) at lower wall temperatures than the flat surface. The two-phase regime was characterized by a balance between added area, changing flow flux, flow channeling, and added conduction resistance. Spray efficiency calculations indicated that a much larger percentage of the liquid sprayed onto the enhanced surface evaporated than with the flat surface. Fin lengths between 1mm and 3mm appeared to be optimum for heat fluxes as high as 124W∕cm2 (based on projected area) and the range of conditions studied.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献