Computer Models for the Mechanics of Three-Dimensional Cutting Processes—Part II: Results for Oblique End Turning and Drilling

Author:

Stephenson D. A.1,Wu S. M.1

Affiliation:

1. Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706

Abstract

Using the method described in Part I, numerical models for predicting chip form and the principal components of power consumption are developed for oblique end turning and drilling. Applying the method involves mainly specifying appropriate sets of independent variables for minimization calculations. Results predicted using the rigid-viscoplastic material model are compared with measurements from unlubricated tests on steel and aluminum alloy samples. The agreement between predicted and measured results for turning is generally good, particularly for chip thickness values, chip-tool contact lengths, and the qualitative effect of varying the depth of cut. The agreement is not as good for drilling; in drilling the main cutting edge torque contribution and qualitative effects of varying the spindle speed and feed rate are accurately predicted, but the average chip thickness is consistently underestimated while chip radii of curl are overestimated. The lack of agreement for the last two outputs appears to be due to constraint from the hole drill flute surf aces which would limit maximum radii of curl.

Publisher

ASME International

Subject

General Medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machining Process Analysis;Metal Cutting Theory and Practice, Third Edition;2016-03-24

2. Physics-Based Microstructure Simulation for Drilled Hole Surface in Hardened Steel;Journal of Manufacturing Science and Engineering;2014-06-05

3. Chip thickening in deep-hole drilling;International Journal of Machine Tools and Manufacture;2006-10

4. Stability and Bifurcation Analysis of a Nonlinear DDE Model for Drilling;Journal of Nonlinear Science;2004-01

5. Nonlinear models of chatter in drilling processes;Dynamical Systems;2002-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3