Combustion Efficiency of a Premixed Continuous Flow Combustor

Author:

Anand M. S.1,Gouldin F. C.1

Affiliation:

1. Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853

Abstract

Experimental data in the form of radial profiles of mean temperature, gas composition and velocity at the combustor exit and combustion efficiency are reported and discussed for a swirling flow, continuous combustor. The combustor is composed of two confined, concentric independently swirling jets: an outer, annular air jet and a central premixed fuel-air jet, the fuel being propane or methane. Combustion is stabilized by a swirl-generated central recirculation zone. The primary objective of this research is to determine the effect of fuel substitution and of changes in outer flow swirl conditions on combustor performance. Results are very similar for both methane and propane. Changes in outer flow swirl cause significant changes in exit profiles, but, surprisingly, combustion efficiency is relatively unchanged. A combustion mechanism is proposed which qualitatively explains the results and identifies important flow characteristics and physical processes determining combustion efficiency. It is hypothesized that combustion occurs in a thin sheet, similar in structure to a premixed turbulent flame, anchored on the combustor centerline just upstream of the recirculation zone and swept downstream with the flow. Combustion efficiency depends on the extent of the radial propagation, across mean flow streamtubes, of this reaction sheet. It is concluded that, in general, this propagation and hence efficiency are extremely sensitive to flow conditions.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3