A Coupling Approach Combining CFD and FEM Methods to Predict Cutting Fluid Effects on the Tool Temperature in Cutting Processes

Author:

Helmig Thorsten1,Peng Bingxiao1,Ehrenpreis Claas1,Augspurger Thorsten1,Frekers Yona1,Kneer Reinhold1,Bergs Thomas1

Affiliation:

1. RWTH Aachen University, Aachen, Germany

Abstract

Abstract In metal cutting processes the use of cutting fluids shows significant effects on workpiece surface quality by reducing thermomechanical loads on cutting tool and workpiece. Many efforts are made to model these thermomechanical processes, however without considering detailed heat transfer between cutting fluid, tool and workpiece. To account for heat transfer effects, a coupling approach is developed which combines CFD (Computational Fluid Dynamics) and FEM (Finite Element Method) chip formation simulation. Prior to the simulation, experimental investigations in orthogonal cutting in dry and wet cutting conditions with two different workpiece materials (AISI 1045 and DA 718) are conducted. To measure the tool temperature in dry as well as in wet cutting conditions, a two color pyrometer is placed inside a EDM drilled cutting tool hole. Besides tool temperature, the cutting force is recorded during the experiments and later used to calculate heat source terms for the CFD simulation. After the experiments, FEM chip formation simulations are performed and provide the chip forms for the CFD mesh generation. In general, CFD simulation and experiment are in reasonable agreement, as for each workpiece setup the measured temperature data is located between the simulation results from the two different tool geometries. Furthermore, numerical and experimental results both show a decrease of tool temperature in wet cutting conditions, however revealing a more significant cooling effect in a AISI 1045 workpiece setup. The results suggest that the placement of drilling holes has a major influence on the local tool temperature distribution, as the drilling hole equals a thermal resistance and hence leads to elevated temperatures at the tool front.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3