Thermal Transport in Polymers: A Review

Author:

Wei Xingfei1,Wang Zhi2,Tian Zhiting2,Luo Tengfei3

Affiliation:

1. Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556

2. Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853

3. Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556; Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556

Abstract

Abstract In this article, we review thermal transport in polymers with different morphologies from aligned fibers to bulk amorphous states. We survey early and recent efforts in engineering polymers with high thermal conductivity by fabricating polymers with large-scale molecular alignments. The experimentally realized extremely high thermal conductivity of polymer nanofibers is highlighted, and understanding of thermal transport physics is discussed. We then transition to the discussion of bulk amorphous polymers with an emphasis on the physics of thermal transport and its relation with the conformation of molecular chains in polymers. We also discuss the current understanding of how the chemistry of polymers would influence thermal transport in amorphous polymers and some limited, but important chemistry-structure-property relationships. Lastly, challenges, perspectives, and outlook of this field are presented. We hope this review will inspire more fundamental and applied research in the polymer thermal transport field to advance scientific understanding and engineering applications.

Funder

3M

American Chemical Society Petroleum Research Fund

Army Research Office

DuPont

National Science Foundation

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3