Affiliation:
1. Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261
2. Department of Mechanical Engineering and Materials Science and McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15261
Abstract
Early stage cerebral aneurysms are characterized by the disruption of the internal elastic lamina. The cause of this breakdown is still not understood, but it has been conjectured to be due to fatigue failure and/or by a breakdown in homeostatic mechanisms in the wall arising from some aspect of the local hemodynamics and wall tension. We propose to model this disruption using a structural damage model. It is built on a previously introduced nonlinear, inelastic multi-mechanism model for cerebral arteries (2005, “An Inelastic Multi-Mechanism Constitutive Equation for Cerebral Arterial Tissue,” Biomech. Model. Mechanobiol., 4(4), pp. 235–248), as well as a recent generalization to include the wall anisotropy (2009, “A Structural Multi-Mechanism Constitutive Equation for Cerebral Arterial Tissue,” Int. J. Solids Struct., 46(14–15), pp. 2920–2928). The current model includes subfailure damage of the elastin, represented by changes in the tissue mechanical properties and unloaded reference length. A structural model is used to characterize the gradual degradation, failure of elastin, and recruitment of anisotropic collagen fibers. The collagen fibers are arranged in two helically oriented families with dispersion in their orientation. Available inelastic experimental data for cerebral arteries are used to evaluate the constitutive model. It is then implemented in a commercial finite element analysis package and validated using analytical solutions with representative values for cerebral arterial tissue.
Subject
Physiology (medical),Biomedical Engineering
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献