Nonuniform Stress Field Determination Based on Deformation Measurement

Author:

Liu C.1

Affiliation:

1. Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545

Abstract

Abstract In this investigation, we demonstrate a technique that, under certain circumstances, will determine stresses associated with a nonuniform deformation field without knowing the detailed constitutive behavior of the deforming material. This technique is based on (1) a detailed deformation measurement of a domain (currently in 2D) and (2) the observation that for isotropic materials, the strain and the stress, which form the so-called work-conjugate pair, are co-axial, or their eigenvectors share the same directions. The particular measures for strain and stress chosen in this study are the Lagrangian (or Green-Lagrangian) strain and the second Piola–Kirchhoff stress. The deformation measurement provides the field of the principal stretch orientation θλ and since the Lagrangian strain and the second Piola–Kirchhoff stress are co-axial, the principal stress orientation θs of the second Piola–Kirchhoff stress is then determined. The Cauchy stress is related to the second Piola–Kirchhoff stress through the deformation gradient tensor, which can be measured experimentally. We then show that the principal stress orientation θσ of the Cauchy stress is the sum of the principal stretch orientation θλ and the local rigid-body rotation θq, which is determinable by the deformation gradient through polar decomposition. Such a relationship is valid for finite deformations. With the principal stress orientation θσ known, the equation of equilibrium, now in terms of the two principal stresses, σ1 and σ2, and θσ, can be solved numerically with appropriate traction boundary conditions. The stresses determined using this technique obviously satisfy the equation of equilibrium, in contrast to those obtained from a constitutive model with input from deformation measurement. The technique and the associated numerical scheme are verified and validated through two virtual test cases representative of the simply-connected and multiply-connected domains, where exact solutions are available. The technique is then applied to an experimental case of nonuniform deformation of a polyvinyl chloride (PVC) sheet with a circular hole and subject to uniaxial tension. In this case, the associated stress field is also determined through a constitutive model of hyperelasticity, the generalized neo-Hookean (GNH) model, calibrated for the particular PVC sheet. Limitations and restrictions of the technique and the associated numerical scheme, as well as possible extensions will be discussed.

Funder

Los Alamos National Laboratory

National Nuclear Security Administration

U.S. Department of Energy

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3