Affiliation:
1. Department of Mechanical Engineering, Bengal Engineering and Science University, Shibpur, Howrah-711103, West Bengal, India
Abstract
In this paper, the performance analysis of a floriculture greenhouse having a fan-pad ventilation system is presented. The greenhouse is powered by integrated solar photovoltaic–electrolyser–fuel cell system. Electrical energy is generated in an array of roof mounted solar photovoltaic modules and energy back up is provided through a combination of polymer electrolyte membrane (PEM) electrolyser and fuel cell system. Excess energy, after meeting the requirements of greenhouse during peak sunshine hours, is supplied to an electrolyser bank to generate hydrogen gas, which is consumed by PEM fuel cell stacks to support the power requirement during the energy deficit hours. The performance of greenhouse and its power system are analyzed for representative days of different seasons of a climatic cycle. The study shows that temperature inside the greenhouse can be maintained within permissible limits for cultivation of target flowers like varieties of rose using fan-pad ventilation. From the performance analysis of power system, it is observed that there is net accumulation of hydrogen gas for representative days of all seasons of a climatic cycle, the daylong cumulative gas generation being maximum in the month of December. The study reinforces the viability of a standalone, grid-independent greenhouse powered through solar energy.
Subject
Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献