Analysis of Convergence Behavior for the Overset Mesh Based Numerical Wave Tank in openfoam

Author:

Chen Hao1,Qian Ling2,Cao Deping3

Affiliation:

1. Newcastle University Faculty of Science Agriculture and Engineering, , Newcastle Upon Tyne NE1 7RU , UK

2. Manchester Metropolitan University Centre for Mathematical Modelling and Flow Analysis, Department of Computing and Mathematics, , Manchester M1 5GD , UK

3. Tongji University Department of Hydraulic Engineering, , 1239 Siping Road, Shanghai 200092 , China

Abstract

Abstract This paper presents a solution verification and validation study for an overset mesh based numerical wave tank in openfoam, which considers the coupling between a free-surface hydrodynamic flow model, a rigid body motion model, and an overset mesh. The coupling between the rigid body motion solver and the free-surface flow solver was achieved in a segregated manner. Free decay of roll motion of a barge was modeled using the numerical wave tank, and the damping coefficient was selected as the target quantity for solution verification. The least-square based solution verification procedure was adopted, where one of the four types of error estimators was fit to the data in the least-square sense. Both structured and unstructured mesh were tested, and their effects on the convergence order, numerical uncertainty, and error were carefully investigated. From the numerical tests, it is found that the numerical wave tank exhibits a very good convergence property for the floating body problems with structured mesh, i.e., nearly second order in space and first order in time. However, when switching the body-fitted mesh to unstructured mesh, the grid convergence is reduced to first order. Unstructured mesh does not significantly affect the convergence order in time domain, but results in a larger uncertainty due to data scattering.

Funder

Engineering and Physical Sciences Research Council

Tongji University

Publisher

ASME International

Subject

Mechanical Engineering,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3