Comparison Between the Incremental Harmonic Balance Method and Alternating Frequency/Time-Domain Method

Author:

Ju R.1,Fan W.2,Zhu W. D.3

Affiliation:

1. Division of Dynamics and Control, School of Astronautics, Harbin Institute of Technology, Harbin 150001, China

2. Department of Mechanics and Engineering Science, Sichuan University, Chengdu 610065, China

3. Department of Mechanical Engineering, University of Maryland, Baltimore County, Baltimore, MD 21250

Abstract

Abstract Two widely used semi-analytical methods: the incremental harmonic balance (IHB) method and alternating frequency/time-domain (AFT) method are compared, and some long-standing discussions on frameworks of these two methods are cleared up. The IHB and AFT methods are proved for the first time to be theoretically equivalent when spectrum aliasing does not occur in the AFT method. Based on this equivalence, the minimal nonaliasing sampling rate for the AFT and fast Fourier transform (FFT)-based IHB methods can be obtained for a system with polynomial nonlinearities. While spectrum aliasing is theoretically inevitable for nonpolynomial nonlinearities, a sufficiently large sampling rate can be usually used with acceptable accuracy and efficiency for many systems. Convergence and efficiency of the IHB method, AFT method, and several FFT-based IHB methods are compared. Accuracy and convergence can be affected when the sampling rate is insufficient. This comparison can provide some insights to avoid misuse of these methods and choose which methods to use in engineering applications.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for Central Universities

Sichuan University

Publisher

ASME International

Subject

General Engineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3