A Numerical Study of the Benefits of Electrically Assisted Boosting Systems

Author:

Burke Richard D.1

Affiliation:

1. Department of Mechanical Engineering, University of Bath, Bath BA2 7AY, UK e-mail:

Abstract

An electric compressor and an electrically assisted turbocharger have been applied to a 2.0 L gasoline and a 2.2 L diesel engine 1D wave dynamic model. A novel approach is presented for evaluating transient response using swept frequency sine wave functions and Fourier transforms. The maximum electrical power was limited to 6% of the maximum engine power (12 kW and 5 kW, respectively). The systems were evaluated under steady-state and transient conditions. Steady-state simulations showed improved brake mean effective pressure (BMEP) at low-engine speeds (below 2500 rpm) but electric power demand was lower (3 kW versus 8 kW) when the electric compressor was on the high-pressure side of the turbocharger. This was due to the surge limitation of the turbocharger compressor. The electrically assisted turbocharger offered little opportunity to increase low-speed BMEP as it was constrained by compressor map width. Rematching the turbo could address this but also compromise high-engine speeds. BMEP frequency analysis was conducted in the region of 0.01–2 Hz. This was repeated at fixed engine speeds between 1000 rpm and 2000 rpm. Spectral analysis of the simulated response showed that the nonassisted turbocharger could not follow the target for frequencies above 0.1 Hz, whereas the electrically assisted device showed no appreciable drop in performance. When assessing the electric power consumption with the excitation frequency, a linear trend was observed at engine speeds below 1500 rpm but more complex behavior was apparent above this speed where BMEP levels are high but exhaust energy was scarce.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3