Study on Capillary Instability With Heat and Mass Transfer Through Porous Media: Effect of Irrotational Viscous Pressure

Author:

Kumar Awasthi Mukesh1

Affiliation:

1. Department of Mathematics, University of Petroleum and Energy Studies, Dehradun-248007 e-mail:

Abstract

In this paper, we investigate the effect of irrotational, viscous pressure on capillary instability of the interface between two viscous, incompressible, and thermally conducting fluids in a fully saturated porous medium when the phases are enclosed between two horizontal cylindrical surfaces coaxial with the interface and when there is mass and heat transfer across the interface. The analysis extends our earlier work in which the capillary instability of two viscous and thermally conducting fluids in a fully saturated porous medium was studied assuming that the motion and pressure are irrotational and the viscosity enters through the jump in the viscous normal stress in the normal stress balance at the interface. Here, we use another irrotational theory in which the discontinuities in the irrotational tangential velocity and shear stress are eliminated in the global energy balance by taking viscous contributions to the irrotational pressure. We use the Darcy's model, and a quadratic dispersion relation is obtained. It is observed that heat and mass transfer has a stabilizing effect on the stability of the system and this effect enhances in the presence of irrotational viscous pressure.

Publisher

ASME International

Subject

Mechanical Engineering

Reference18 articles.

1. Viscous Potential Flow Analysis of Capillary Instability;Int. J. Multiphase Flow,2002

2. Viscoelastic Potential Flow Analysis of Capillary Instability;J. Non-Newtonian Fluid Mech.,2003

3. Pressure Corrections for Potential Flow Analysis of Capillary Instability of Viscous Fluids;J. Fluid Mech.,2005

4. Viscous Contributions to the Pressure for Potential Flow Analysis of Capillary Instability of Viscous Fluids;Phys. Fluids,2005

5. Effect of Heat and Mass Transfer on Rayleigh–Taylor Instability;J. Fluids Eng.,1972

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3