Numerical Simulation of Streaming Potentials Due to Deformation-Induced Hierarchical Flows in Cortical Bone

Author:

Mak A. F. T.1,Zhang J. D.12

Affiliation:

1. Jockey Club Rehabilitation Engineering Centre, The Hong Kong Polytechnic University, Hunghom, Kowloon, Hong Kong

2. School of Astronautics, Beijing University of Aeronautics and Astronautics, Beijing, China

Abstract

Bone is a very dynamic tissue capable of modifying its composition, microstructure, and overall geometry in response to the changing biomechanical needs. Streaming potential has been hypothesized as a mechanotransduction mechanism that may allow osteocytes to sense their biomechanical environment. A correct understanding of the mechanism for streaming potential will illuminate our understanding of bone remodeling, such as the remodeling associated with exercise hypertrophy, disuse atrophy, and the bone remodeling around implants. In the current research, a numerical model based on the finite element discretization is proposed to simulate the fluid flows through the complicated hierarchical flow system and to calculate the concomitant stress generated potential (SGP) as a result of applied mechanical loading. The lacunae–canaliculi and the matrix microporosity are modeled together as discrete one-dimensional flow channels superposed in a biphasic poroelastic matrix. The cusplike electric potential distribution surrounding the Haversian canal that was experimentally observed and reported in the literature earlier was successfully reproduced by the current numerical calculation.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Electromagnetic Modulation of Cell Behavior: Unraveling the Positive Impacts in a Comprehensive Review;Annals of Biomedical Engineering;2024-04-23

2. Physiological loading-induced streaming potentials in osteogenesis imperfecta bone;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2023-06-15

3. Bone: An Outstanding Composite Material;Applied Sciences;2022-03-26

4. Finite Element Models of Osteocytes and Their Load-Induced Activation;Current Osteoporosis Reports;2022-03-17

5. The effect of low-frequency electromagnetic field on human bone marrow stem/progenitor cell differentiation;Stem Cell Research;2015-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3