Multiscale Tomographic Wave–Matter Interaction Modeling to Enable Artifact-Free Material Defect Reconstruction

Author:

Steuben John C.1,Michopoulos John G.1,Iliopoulos Athanasios P.2,Graber Benjamin D.1,Birnbaum Andrew J.1

Affiliation:

1. Computational Multiphysics Systems Laboratory, Center of Materials Physics and Technology, Naval Research Laboratory, Washington, DC 20375

2. Computational Multiphysics Systems Laboratory, Center of Materials, Physics and Technology, Naval Research Laboratory, Washington, DC 20375

Abstract

Abstract Technologies for material defect detection/metrology are often based on measuring the interactions between defects and waves. These interactions frequently create artifacts that skew the quantitative character of the relevant measurements. Since defects can have a significant impact on the functional behavior of the materials and structures they are embedded in, accurate knowledge of their geometric shape and size is necessary. Responding to this need, the present work introduces preliminary efforts toward a multiscale modeling and simulation framework for capturing the interactions of waves with materials bearing defect ensembles. It is first shown that conventional approaches such as ray tracing result in excessive geometric errors. Instead, a more robust method employing solutions to the wave equation (calculated using the Finite Element Method) is developed. Although the use of solutions to the general wave equation permits application of the method to many wave-based defect detection technologies, this work focuses exclusively on the application to X-ray computed tomography (XCT). A general parameterization of defect geometries based on superquadratic functions is also introduced, and the interactions of defects modeled in this fashion with X-rays are investigated. A synthetic two-dimensional demonstration problem is presented. It is shown that the combination of parameterization and modeling techniques allows the recovery of an accurate, artifact-free defect geometry utilizing classical inverse methods. The path forward to a more complete realization of this technology, including extensions to other wave-based technologies, three-dimensional problem domains, and data derived from physical experiments is outlined.

Funder

Office of Naval Research

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multiphysics Missing Data Synthesis: A Machine Learning Approach for Mitigating Data Gaps and Artifacts;Journal of Computing and Information Science in Engineering;2024-03-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3