Affiliation:
1. Facultad de Ingeniería,Departamento de Termo-fluidos, DIMEI,Universidad Nacional Autónoma de México, Ciudad Universitaria,C. P. 04510, Mexico D. F., Mexico
Abstract
The combustion gases theoretical adiabatic temperatures are reduced to equilibrium temperatures mainly because of the endothermic reactions of CO2 and H2O dissociation and NO formation. Therefore, the heating capacity of the gases is reduced to the equilibrium gases enthalpy. In the paper, these reactions and the way to consider them to calculate the gases’ final equilibrium are exemplified, covering an ample range of temperatures. It is shown the method sensitivity and the results are verified against some registered values. The procedure allows calculation of the NO formation, evidencing its increment with the temperature. The reductions in combustion gases’ adiabatic temperature and heating capacity are proportional to the theoretical adiabatic combustion temperature, apparent when the respective percentage decrements go from 2.2 and 2.7 at 2224 K to 46.8 and 50.9 at 7427 K for the studied combustion systems. This trend points out some maximum temperature reachable by oxidation, possibly 6000 K-the approximate energy emission sun temperature.
Subject
Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献