Evaluation of the Sub-Channel Code COBRA-TF for Prediction of BWR Fuel Assembly Void Fraction Distribution

Author:

Aydogan Fatih1,Hochreiter Lawrence E.1,Ivanov Kostadin1

Affiliation:

1. Pennsylvania State University, University Park, PA

Abstract

Good quality experimental data is needed to refine the thermal hydraulic models for the prediction of rod bundle void distribution and critical heat flux (CHF) or dry-out. The Nuclear Power Engineering Corporation (NUPEC) has provided a valuable database to evaluate the thermal hydraulic codes [1]. Part of this database was selected for the NUPEC BWR Full-size Fine-Mesh Bundle Tests (BFBT) benchmark sponsored by US NRC, METI-Japan, NEA/OECD and Nuclear Engineering Program of the Pennsylvania State University (PSU). Twenty-five organizations from ten countries have confirmed their intention to participate and will provide code predictions to be compared to the measured data for a series of defined exercises within the framework of the BFBT benchmark. This benchmark data includes both the fine-mesh high quality sub-channel void fraction and critical power data. Using a full BWR rod bundle test facility, the void distribution was measured at mesh sizes smaller than the sub-channel by using a state-of-the-art computer tomography (CT) technology [1]. Experiments were performed for different pressures, flow rates, exit qualities, inlet sub-cooling, power distributions, spacer types and assembly designs. There are microscopic and sub-channel averaged void fraction data from the CT scanner at the bundle exit as well as X-ray densitometer void distribution data at different elevation levels in the rod bundle. Each sub-channel’s loss coefficient was calculated with using the Rehme method [2,3], and a COBRA-TF sub-channel model was developed for the NUPEC facility. The BWR assembly that was modeled with COBRA-TF includes two water rods at the center. The predicted sub-channel void fraction values from COBRA-TF are compared with the bundle exit void fraction values measured using the CT-scanner void fraction from the BFBT benchmark data. Different plots are used to examine the code prediction of the void distribution at a sub-channel level for the different sub-channels within the bundle.

Publisher

ASMEDC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3