A Fuel Channel Design for CANDU-SCWR

Author:

Chow C. K.1,Bushby S. J.2,Khartabil H. F.3

Affiliation:

1. Atomic Energy of Canada, Ltd., Mississauga, ON, Canada

2. Natural Resources Canada, Ottawa, ON, Canada

3. Atomic Energy of Canada, Ltd., Chalk River, ON, Canada

Abstract

The CANDU®-Supercritical Water Reactor (CANDU-SCWR) is one of the six reactor concepts being considered by the Generation-IV International Forum (GIF) for international collaborative R&D. With SCW coolant, the thermodynamic efficiency is increased to over 40%. The CANDU-SCWR is moderated using heavy water, and it has fuel bundles residing inside horizontal pressure tubes, similar to the current CANDU design. The coolant, however, is light water at 25 MPa, with an inlet temperature of 350°C and an outlet temperature of 625°C. Because of the high temperature and high pressure of the coolant, the standard CANDU pressure tube design cannot be used. This paper presents one of the insulated pressure tube designs being considered for the CANDU-SCWR fuel channels. Unlike current CANDU reactors, the proposed CANDU-SCWR fuel channel does not use calandria tubes to separate the pressure tubes from the moderator. Each pressure tube is in direct contact with the moderator, which operates at an average temperature of about 80°C. The pressure tube is thermally insulated from the hot coolant by a porous ceramic insulator. A perforated metal liner protects the insulator from being damaged by the fuel bundles and erosion by the coolant. The coolant pressure is transmitted through the perforated metal liner and insulator and applied directly to the relatively cold pressure tube. The material selection for each fuel channel component depends on its function. The fuel sheaths and the perforated liner must have high corrosion resistance in SCW, although their resident times are significantly different. The insulator must have high thermal resistance and corrosion resistance in SCW, plus sufficient strength to bear the weight of the fuel bundles without significant thickness reduction during its design life. The pressure tube is the pressure boundary material, so it must have high strength to contain the coolant. One common requirement for all in-core fuel channel components is that they should be as neutron transparent as possible. The irradiation deformation of all these components must also be considered in their design. This paper presents the design of this fuel channel, reviews existing data for materials, indicates where more data are required, and summarizes our plans to obtain these data.

Publisher

ASMEDC

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3