On the Weak Signal Amplification by Twice Sampling Vibrational Resonance Method in Fractional Duffing Oscillators

Author:

Yang Jin-Rong1,Wu Cheng-Jin1,Yang Jian-Hua234,Liu Hou-Guang1

Affiliation:

1. School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 221116, China

2. School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 221116, China;

3. Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109;

4. Jiangsu Key Laboratory of Mine Mechanical and Electrical Equipment, China University of Mining and Technology, Xuzhou 221116, China e-mail:

Abstract

In our former work developed by Yang et al. (2017, “Enhancing the Weak Signal With Arbitrary High-Frequency by Vibrational Resonance in Fractional-Order Duffing Oscillators,” ASME J. Comput. Nonlinear Dyn., 12(5), p. 051011), we put forward the rescaled vibrational resonance (VR) method in fractional duffing oscillators to amplify a weak signal with arbitrary high frequency. In the present work, we propose another method named as twice sampling VR to achieve the same goal. Although physical processes of two discussed methods are different, the results obtained by them are identical completely. Besides the two external signals excitation case, the validity of the new proposed method is also verified in the system that is excited by an amplitude modulated signal. Further, the dynamics of the system reveals that the resonance performance, i.e., the strength and the pattern, depends on the fractional order closely.

Funder

National Natural Science Foundation of China

Ministry of Education of the People's Republic of China

China University of Mining and Technology

Natural Science Research of Jiangsu Higher Education Institutions of China

Publisher

ASME International

Subject

Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3