Experimental Tests With Non-Uniformly Heated 19-Pins Fuel Bundle Cooled by HLM

Author:

Angelucci M.1,Di Piazza I.2,Tarantino M.2,Marinari R.1,Polazzi G.2,Sermenghi V.2

Affiliation:

1. University of Pisa, Pisa, Italy

2. ENEA FSN-ING C.R. Brasimone, Camugnano, Italy

Abstract

An experimental campaign was performed on a non-uniformly heated 19-pins wire-spaced fuel pin bundle simulator, cooled by Heavy Liquid Metal and installed in the NACIE-UP (NAtural CIrculation Experiment-UPgrade) facility located at the ENEA Brasimone Research Center (Italy). The experimental tests concerned mass flow rate transition of the primary coolant from forced to natural circulation, with fuel pin bundle simulator characterized by non-uniform power distribution. The main objective of the performed experimental campaign was to perform integral system and local thermal-hydraulic analysis, in particular to investigate the flow in different flow regimes and specifically the transition from forced to natural circulation flow and, more specifically, analyze the behavior of the 19-pins wire-spaced fuel pin simulator (FPS) during such transient. Indeed, the performed test were characterized by non-uniform heating of the bundle (i.e. just some pins switched on), so the effects of this non-uniformity on the local temperatures and on the overall system behavior was evaluated. A deep investigation on the local temperature distribution was performed thanks to the accurate instrumentation provided in the bundle (67 thermocouples). For instance, in some cases, the wall temperatures relative to pins switched off remained below the relative sub-channel temperature, depending on the heating distribution. The obtained experimental data provided useful information for the characterization of the bundle and the computation of the heat transfer coefficient. Moreover, the collected system data can be helpful for STH codes validation, whereas the local fuel bundle data, especially the ones from dissymmetric tests can be useful for the qualification and benchmarking of CFD codes and coupled STH/CFD methods for HLM systems.

Publisher

American Society of Mechanical Engineers

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3