Experimental Investigation on Boiling Flow Characteristics Under Passive IVR-ERVC Conditions

Author:

Wang Fan1,Kuang Bo1,Liu Pengfei1,He Longkun1

Affiliation:

1. Shanghai Jiao Tong University, Shanghai, China

Abstract

In vessel retention (IVR) of molten core debris via water cooling at the external surface of the reactor vessel is an important severe accident management feature of advanced passive plants. During postulated severe accidents, the heat generated due to the molten debris relocation to the lower reactor pressure vessel head needs to be removed continuously to prevent vessel failure. Besides the local critical heat flux (CHF) of outer wall surface which is the first importance, a stable feature of natural circulation flow and an effective natural circulation capability within the external reactor vessel cooling (ERVC) channel tend to be rather crucial for the success of IVR. Under this circumstance, a full-height ERVC test infrastructure for large advanced pressurized water reactor (PWR) IVR strategy engineering validation, namely reactor pressure vessel external cooling II test facility (REPEC-II), has been designed and constructed in Shanghai Jiao Tong University (SJTU). And therefore, a brief introduction to the SJTU REPEC II facility as well as the experimental progress to date, is hereby given in the paper. During test campaign on the REPEC II facility, the one-dimensional natural circulation boiling flow characteristics during IVR-ERVC severe accident mitigation are investigated, with the experimental observation and measurement on natural circulation flow characteristics within the REPEC II test facility. Based on the abundant results acquired in the test campaign, it is attempted, in this paper, to summarize and evaluate the ERVC performances and trends under various practical engineered conditions. The main evaluation results includes: influence on ERVC flow characteristics of various non-uniform heat load distribution cooling limits, the observed sinusoidal oscillation is suggested to be flashing-induced density wave oscillations and the oscillation period correlated well with the passing time of single-phase liquid in the riser. It is expected that these conclusions may help designers to have a reliable estimate of the impact of some related engineered factors on real IVR-ERVC performance.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3