The Effect of Functional Spacers on the Liquid Film Thickness and Dryout in a BWR Fuel Bundle Model

Author:

Bolesch Christian1,Robers Lukas1,Zboray Robert2,Prasser Horst-Michael1

Affiliation:

1. ETH Zürich, Zurich, Switzerland

2. Pennsylvania State University, University Park, PA

Abstract

For the BWRs, the dryout margin is one of the core design limitation factors. Today’s industry standard is to use a large margin to dryout and functional spacer grids with vanes to enhance the heat transfer and to reduce the fraction of entrained droplets. Difficulties for precise measurements under reactor conditions lead to a lack of knowledge on the exact effects of the spacers on the flow and suggest the use of scaled experiments. For this experiment, the goal is to provide high-resolution data for CFD code validation as well as visualizing the effects of functional spacers and the liquid film and potentially the dryout front. The Dryout Tomography Experiment (DoToX) facility at ETH Zürich is a closed loop experiment for two-phase flow investigations in a fuel bundle model using a modelling fluid. Key aspects are a single undisturbed subchannel and the surrounding four heating rods containing a liquid heating system. This setup allows for a steady state dryout without endangering the structural integrity of the facility and for the 3D reconstruction of the time averaged void distribution within the flow channel by means of an X-Ray and cold neutron Computer Tomography (CT). In this study we pay special attention to the annular flow in the upper half of the sub channel. We investigate the first results delivered by the facility. Prototypical spacer designs available in the open literature were used. We present the Liquid Film Thickness (LFT) distributions on the walls of the heating rods. Improvements towards the dryout performance as well as drawbacks of the specified spacer design are highlighted.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3