Biosynthesis of Amyl Alcohol From Scenedesmus quadricauda Microalgae for Light Commercial Vehicle Compression Ignition Engine Using Prediction Models

Author:

Jacob Ashwin1,Ashok B.1

Affiliation:

1. Engine Testing Lab., School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India

Abstract

Abstract Third-generation feedstocks and its constituent biofuels have shown promising results in the light of sustainable production and as a feasible fuel source for internal combustion (IC) engines. Hence, in this study, a third-generation microalgae feedstock (Scenedesmus quadricauda) biomass was cultivated sustainably using an in situ tubular photo bioreactor and raceway pond to synthesize quintet carbon chained amyl alcohol using Ehrlich biosynthetic pathway. On analyzing the synthesized amyl alcohol, a homogenous mixture of a 20% (vol/vol) amyl alcohol-diesel blend showed similarities with conventional diesel in their physio-chemical properties. This potential fuel source was analyzed though systematic experimentation at maximum throttle position condition in a light commercial vehicle compression ignition engine. The conducted experiments were directed by response surface methodology (RSM) coupled with central composite design (CCD) which delivered a set of influential and interactive responses on engine testing. At optimal operating condition, 0.7% rise in brake thermal efficiency (BTE) and an increased specific fuel consumption of 5.6% is reported due to the lower heating value of the biofuel. Furthermore, a 55.8% and 5.4% drop in smoke and carbon monoxide emissions is observed. However, oxides of nitrogen emission increases by 31.7% for biofuel operation as a tradeoff for the improved combustion characteristics achieved.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3