Squeak and Rattle Prevention by Geometric Variation Management Using a Two-Stage Evolutionary Optimization Approach

Author:

Bayani Mohsen1,Wickman Casper2,Lindkvist Lars3,Söderberg Rikard3

Affiliation:

1. Personal Driving Experience Centre, Volvo Car Corporation, Gothenburg 41742, Sweden

2. User Experience, Volvo Car Corporation, Gothenburg 40531, Sweden

3. Department of Industrial and Materials Science, Chalmers University of Technology, Gothenburg 41296, Sweden

Abstract

Abstract Squeak and rattle are annoying sounds that are often regarded as failure indicators by car users. Geometric variation is a key contributor to the generation of squeak and rattle sounds. Optimization of the connection configuration in assemblies can be a provision to minimize this risk. However, the optimization process for large assemblies can be computationally expensive. The focus of this work is to propose a two-stage evolutionary optimization scheme to find the fittest connection configurations that minimize the risk for squeak and rattle. This was done by defining the objective functions as the measured variation and deviation in the rattle direction and the squeak plane. In the first stage, the location of the fasteners primarily contributing to the rattle direction measures is identified. In the second stage, fasteners primarily contributing to the squeak plane measures are added to the fittest configuration from phase one. It was assumed that the fasteners from the squeak group plane have a lower-order effect on the rattle direction measures, compared to the fasteners from the rattle direction group. This assumption was falsified for a set of simplified geometries. Also, a new uniform space filler algorithm was introduced to efficiently generate an inclusive and feasible starting population for the optimization process by incorporating the problem constraints in the algorithm. For two industrial cases, it was shown that by using the proposed two-stage optimization scheme, the variation and deviation measures in critical interfaces for squeak and rattle improved compared to the baseline results.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3