A Novel Bulk-Flow Model for Improved Predictions of Force Coefficients in Grooved Oil Seals Operating Eccentrically

Author:

Andrés Luis San1,Delgado Adolfo2

Affiliation:

1. Texas A&M University, College Station, TX 77843-3123

2. GE Research Center, Niskayuna, NY 12309

Abstract

Oil seals in centrifugal compressors reduce leakage of the process gas into the support bearings and ambient. Under certain operating conditions of speed and pressure, oil seals lock, becoming a source of hydrodynamic instability due to excessively large cross coupled stiffness coefficients. It is a common practice to machine circumferential grooves, breaking the seal land, to isolate shear flow induced film pressures in contiguous lands, and hence reducing the seal cross coupled stiffnesses. Published tests results for oil seal rings shows that an inner land groove, shallow or deep, does not actually reduce the cross-stiffnesses as much as conventional models predict. In addition, the tested grooved oil seals evidenced large added mass coefficients while predictive models, based on classical lubrication theory, neglect fluid inertia effects. This paper introduces a bulk-flow model for groove oil seals operating eccentrically and its solution via the finite element (FE) method. The analysis relies on an effective groove depth, different from the physical depth, which delimits the upper boundary for the squeeze film flow. Predictions of rotordynamic force coefficients are compared to published experimental force coefficients for a smooth land seal and a seal with a single inner groove with depth equaling 15 times the land clearance. The test data represent operation at 10 krpm and 70 bar supply pressure, and four journal eccentricity ratios (e/c= 0, 0.3, 0.5, 0.7). Predictions from the current model agree with the test data for operation at the lowest eccentricities (e/c= 0.3) with discrepancies increasing at larger journal eccentricities. The new flow model is a significant improvement towards the accurate estimation of grooved seal cross-coupled stiffnesses and added mass coefficients; the latter was previously ignored or largely under predicted.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference18 articles.

1. Rotordynamic-Coefficients and Static (Equilibrium Loci and Leakage) Characteristics for Short, Laminar-Flow Annular Seals;Childs;ASME J. Tribol.

2. Kirk, R. , 1986, “Oil Seal Dynamic Considerations for Analysis of Centrifugal Compressors,” Proc. 15th Turbomachinery Symposium, Houston, TX, pp. 25–34.

3. Analysis of Multi-Land High Pressure Oil Seals;Semanate;STLE Tribol. Trans.

4. Finite Element Thermo-Hydrodynamic Solution of Floating Ring Seals for High Pressure Compressors Using the Finite-Element Method;Baheti;STLE Tribol. Trans.

5. Oil Seal Effects and Subsynchronous Vibrations in High-Speed Compressors;Allaire

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3