Thermal-Mechanical Fracture Analysis Considering Heat Flux Singularity

Author:

Hu Xiaofei1,Ding Xing1,Zhao Yanguang1,Yao Weian1

Affiliation:

1. State Key Laboratory of Structural Analysis for Industrial Equipment, International Research Center for Computational Mechanics, Dalian University of Technology, Dalian 116024, China

Abstract

Abstract Precise modeling of thermoelastic cracks remains challenging due to the fact that both heat flux and stress fields have singularity issue. In the previous studies, the first author proposed different types of symplectic analytical singular element (SASE) for thermal conduction and stress analysis of cracks. It has been demonstrated that these crack-tip elements of which the interior fields are defined by analytical solutions are highly accurate and efficient. However, the thermal mechanical coupling problem of crack cannot be treated with the existing SASEs. The main difficulty is that the analytical solution of the crack problem considering arbitrary temperature distribution is not available. Approximate solution may lead to significant numerical instabilities. Moreover, the construction of a crack-tip singular element for both thermal conduction and stress analysis is complicated and requires more efforts. In this study, the governing symplectic dual equation of thermoelastic crack is restudied. The analytical solution considering arbitrary temperature distribution is obtained in close form which, to the best of the authors' knowledge, has not been found before. Then, the finite element formulation of a new SASE for thermal-mechanical fracture analysis is derived analytically through a variational approach. A two-step analysis procedure is proposed to calculate the mixed mode thermal stress intensity factors (TSIFs)) and the analysis can be done on a fixed finite element mesh. Mesh refinement around the crack tip is unnecessary, and the mixed-mode TSIFs can be solved accurately without any postprocessing.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A symplectic approach for the fractional heat transfer and thermal damage in 2D biological tissues;International Journal of Numerical Methods for Heat & Fluid Flow;2023-07-10

2. A novel super symplectic analytical singular element for crack propagation along a bimaterial interface;Theoretical and Applied Fracture Mechanics;2022-12

3. A Precise Time-Domain Expanding Crack-Tip Element for 3D Planar and Axial Dynamic Cracks;International Journal of Computational Methods;2021-12-30

4. An oblique circular cylinder element for 3D interfacial cracks in composites;Engineering Fracture Mechanics;2021-07

5. A Force-Based Rectangular Cracked Element;International Journal of Applied Mechanics;2021-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3