Effects of Elevated Temperatures on Rocking Vibration of Rotating Disk and Spindle Systems

Author:

Tseng Chaw-Wu1,Shen Jr-Yi1,Ku C.-P. R.2,Shen I. Y.1

Affiliation:

1. Department of Mechanical Engineering, University of Washington, Seattle, WA 98195-2600

2. Western Digital Corporation, San Jose, CA 95138

Abstract

This paper studies how temperature variations affect natural frequencies of rocking vibration of a rotating disk and spindle system through mathematical modeling and experimental measurements. Existing literature has shown that both radial bearing stiffness krr and natural frequency ω01B of one-nodal-diameter disk modes could substantially affect natural frequencies ω01U of rocking vibration. In this paper, a preliminary experiment first identifies that relaxation of bearing stiffness krr is the dominating factor to shift the natural frequency ω01U at elevated temperatures. In addition, the bearing relaxation primarily results from thermal mismatch between the bearing raceways and the rotating hub. Guided by the experimental results, a mathematical model is developed to determine how temperature variations affect bearing contact angles, bearing preloads, and subsequently the radial bearing stiffness krr. Based on the bearing stiffness krr and disk frequency ω01B at elevated temperatures, one can predict natural frequency ω01U of rocking vibration through the mathematical model by Shen and Ku (1997). Finally, ω01U of a rotating disk and spindle system are measured in a thermal chamber to validate the theoretical predictions.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3