Large-Scale Modeling of Damage and Failure of Nuclear Graphite Moderated Reactor

Author:

Farrokhnia Ahmadreza1,Jivkov Andrey P.1,Hall Graham1,Mummery Paul1

Affiliation:

1. University of Manchester, Manchester M13 9PL, UK

Abstract

Abstract The UK Advanced Gas-Cooled reactors (AGRs) have cores made of graphite bricks with dual functions: as structural elements of the core, providing space for and separating fuel and control rods; and as moderator of the nuclear reaction. Nuclear graphite is a quasi-brittle material, where the dominant mechanism for failure is cracking. While cracking of isolated bricks is expected due to operation-induced changes in graphite microstructure and stress fields, these could be tolerated as far as the overall structural function of the core is maintained. Assessment of the whole core behavior has been previously done with whole scale models where bricks have been considered as rigid body elements connected by elastic-brittle springs. This approach does not allow for the realistic assessment of the stresses in the bricks and associated brick cracking. Reported here are results from an ongoing project, which addresses this shortcoming. The proposed model uses deformable bricks with appropriate interactions, allowing for physically realistic whole core analysis. The results are focused on the damage that a graphite moderated reactor develops during a life cycle, how this affects the behavior of the whole core, and how changes in bricks' behavior impacts the core integrity. The proposed methodology is a major step toward high-fidelity assessment of AGRs' fitness for service, required for supporting continuous safe operation and life-extension decisions.

Funder

Engineering and Physical Sciences Research Council

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3