A Normal Force-Displacement Model for Contacting Spheres Accounting for Plastic Deformation: Force-Driven Formulation

Author:

Vu-Quoc L.,Zhang X.1,Lesburg L.1

Affiliation:

1. Aerospace Engineering, Mechanics and Engineering Science, University of Florida, Gainesville, FL 32611

Abstract

In this paper, we present a simple and accurate model for the normal force-displacement (NFD) relation for contacting spherical particles, accounting for the effects of plastic deformation. This NFD model, based on the formalism of the continuum theory of elastoplasticity, is to be used in granular flow simulations involving thousands of particles; the efficiency of the model is thus a crucial property. The accuracy of the model allows for an accurate prediction of the contact force level in the plastic regime. In addition to being more accurate than previously proposed NFD models, the proposed NFD model also leads to more accurate coefficient of restitution that is a function of the approaching velocity of two particles in collision. The novelty of the present NFD model is the additive decomposition of the contact-area radius, and the correction of the curvature of the particles at the contact point due to plastic flow. The accuracy of the proposed model is validated against nonlinear finite element results involving plastic flow in both loading and unloading conditions. [S0021-8936(00)03102-0]

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 129 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3