Study of Aerodynamic Performance and Power Output for Residential-Scale Wind Turbines

Author:

Hasan Alaa S.1,Abousabae Mohammed1,Salem Abdel Rahman1,Amano Ryoichi S.1

Affiliation:

1. Department of Mechanical Engineering, University of Wisconsin-Milwaukee, 115 E. Reindl Way, Glendale, WI 53212

Abstract

Abstract This study presents the rotor blade airfoil analysis of residential-scale wind turbines. On this track, four new airfoils (GOE 447, GOE 446, NACA 6412, and NACA 64(3)-618) characterized by their high lift-to-drag ratios (161.3, 148.7, 142.7, and 136.3, respectively). These new airfoils are used to generate an entire 7 m long blades for three-bladed rotor horizontal axis wind turbine models tested numerically at low, medium, and rated wind speeds of 7.5, 10, and 12.5 m/s, respectively, with a design tip speed ratio of 7. The criterion to judge each model’s performance is power output. Thus, the blades of the model that produce the highest power are selected to undergo a tip modification (winglet) and leading-edge modification (tubercles), seeking power improvement. It is found that the GOE 447 airfoil outperformed the other three airfoils at all tested wind speeds. Thus, it is opted for adding winglets and tubercles. At 12.5 m/s, winglet design produced 5% more power, while tubercles produced 5.5% more power than the GOE 447 baseline design. Furthermore, the computational domain is divided into two regions: rotating (the disc that encloses the rotor) and stationary (the rest of the flow domain). Meanwhile, the numerical model is validated against the experimental velocity measurements. Since Reynolds-averaged Navier–Stokes with k–ω shear stress transport turbulence model can capture the laminar-to-turbulent boundary layer transition, it is used in the 18 simulations of the current work. However, large eddy simulation (LES) can deal successfully with the various scale eddies resulting from the rotor blades and its interactions with the surrounding flow. Thus, the LES was used in the six simulations done at the rated wind speed. LES power output calculation is 7.9% to 11.9% higher than the RANS power output calculation.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3