Vortex Shedding and Lock-On in a Perturbed Flow

Author:

Hall Mary S.1,Griffin Owen M.2

Affiliation:

1. Science Applications International Corporation, McLean, VA 22102

2. Naval Research Laboratory, Washington, DC 20375-5351

Abstract

Vortex shedding resonance or lock-on is observed when a bluff body is placed in an incident mean flow with a superimposed periodic component. Direct numerical simulations of this flow at a Reynolds number of 200 are compared here with experiments that have been conducted by several investigators. The bounds of the lock-on or resonance flow regimes for the computations and experiments are in good agreement. The computed and measured vortex street wavelengths also are in good agreement with experiments at Reynolds numbers from 100 to 2000. Comparison of these computations with experiments shows that both natural, or unforced, and forced vortex street wakes are nondispersive in their wave-like behavior. Recent active control experiments with rotational oscillations of a circular cylinder find this same nondispersive behavior over a three-fold range of frequencies at Reynolds numbers up to 15,000. The vortex shedding and lock-on resulting from the introduction of a periodic inflow component upon the mean flow exhibit a particularly strong resonance between the imposed perturbations and the vortices.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3