A Mathematical Investigation of Premixed Lycopodium Dust Flame in a Small Furnace

Author:

Moghadasi Hesam1,Rahbari Alireza2,Bidabadi Mehdi1,Poorfar Alireza Khoeini1,Farhangmehr Vahid3

Affiliation:

1. School of Mechanical Engineering, Department of Energy Conversion, Iran University of Science and Technology (IUST), Narmak, Tehran 16846-13114, Iran e-mail:

2. Department of Mechanical Engineering, Shahid Rajaee Teacher Training University (SRTTU), Tehran 1678815811, Iran; Research School of Engineering, The Australian National University, Canberra, ACT 2601, Australia e-mails: ;

3. Department of Mechanical Engineering, University of Bonab, Bonab, 5551761167, Iran email:

Abstract

In the present study, a comprehensive mathematical method is developed to realize the flame expansion in the melting furnace zones. For this purpose, the furnace is composed of two zones: flame and post flame zones. Two different scenarios are covered in this research: Using lycopodium as a substitute fuel which is then converted to methane after the vaporization process, supplying the system with methane directly as a conventional fuel. The equations governing the problem with the required boundary conditions are developed and solved in each zone. The obtained results show great compatibility with the experimental findings in this research. Since lycopodium as the replacement fuel mostly contains volatile materials, one of the challenges in this study lies on understanding the effect of particle vaporization on the temperature distribution in a furnace. It is concluded that the average temperature in zones α1, α2, β1, and β2, is reduced by about 5 K, while it is increased by approximately the same amount in zones χ1, χ2, δ1, and δ2 after considering lycopodium as a fuel. Moreover, the role of vaporization and radiation on the combustion characteristics is studied in details. The achieved results from this analysis can be implemented in several industrial applications aiming for improving the energy efficiency outcome from their systems.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3