Investigation on the Stall Inception Circumferential Position and Stall Process Behavior in a Centrifugal Compressor With Volute

Author:

Zhang Hanzhi1,Yang Ce1,Yang Dengfeng1,Wang Wenli1,Yang Changmao1,Qi Mingxu1

Affiliation:

1. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China e-mail:

Abstract

The present paper numerically and experimentally investigates the stall inception mechanisms in a centrifugal compressor with volute. Current studies about stall inception pay more attention on the axial compressors than the centrifugal compressors; especially, the circumferential position of stall inception onset and the stall process in the centrifugal compressor with asymmetric volute structure have not been studied sufficiently yet. In this work, the compressor performance experiment was conducted and the casing wall static pressure distributions were obtained by 72 static pressure sensors first. Then, the full annular unsteady simulations were carried out at different stable operating points, and the time-averaged static pressure distributions were compared with the experimental results. Finally, the stall process of the compressor was investigated by unsteady simulations in detail. Results show that the stall inception onset is determined by the impeller leading edge (LE) spillage flow, and the occurrence time of trailing edge (TE) backflow is prior to the LE spillage. The nonuniform static pressure circumferential distribution at impeller outlet induced by volute tongue causes the two stall inception regions locating at certain circumferential positions, which are 120 deg and 300 deg circumferential positions at impeller LE, corresponding to the circumferential static pressure peak (PP) and bulge regions at impeller outlet, respectively. In detail, at rotor revolution 2.86, a small disturbance that the incoming/tip clearance flow interface is perpendicular to axial direction occurs at 120 deg position, but this disturbance did not cause the compressor stall. Then at revolution 7, the first stall inception zone (spillage region) occurs at 120 deg position, causing the compressor stall with positive pressure ratio performance. At approximately revolution 23, the second stall inception zone occurs at about 300 deg position; however, both the intensity and size of this stall inception zone are smaller than those of the first stall inception zone. These two stall inception zones are not moving along circumferential direction because the stall inception circumferential position is dominated by the impeller outlet static pressure distribution. Even then, the obvious low frequency signals appear after the spillage crossing two blade LEs, because at this moment, the spillage vortex caused by the tip leakage flow begins to shed. However, due to the asymmetric structure limitation, this vortex cannot move across full annular. Furthermore, the spillage vortexes cause the local low static pressure zone ahead of blade LE in the centrifugal compressor with volute, suggesting that the spillage can be predicted by the steady casing wall static pressure measuring. The development of blockage zones at impeller LE is also investigated quantitatively by analyzing the stall blockage effect.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference31 articles.

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3