Modeling and Simulation of Paraplegic Ambulation in a Reciprocating Gait Orthosis

Author:

Tashman S.1,Zajac F. E.2,Perkash I.3

Affiliation:

1. Rehabilitation Research and Development Center, Veterans Affairs Medical Center, Palo Alto, CA and Mechanical Engineering Department, Design Division, Stanford University, Stanford, CA

2. Rehabilitation Research and Development Center, Veterans Affairs Medical Center, Palo Alto, CA and Biomechanical Engineering Program, Mechanical Engineering Department, Stanford University

3. Spinal Cord Injury Center, Veterans Affairs Medical Center, Palo Alto, CA and Departments of Urology and Functional Restoration, Stanford University School of Medicine

Abstract

We developed a three dimensional, four segment, eight-degree-of-freedom model for the analysis of paraplegic ambulation in a reciprocating gait orthosis (RGO). Model development was guided by experimental analysis of a spinal cord injured individual walking in an RGO with the additional assistance of arm crutches. Body forces and torques required to produce a dynamic simulation of the RGO gait swing phase were found by solving an optimal control problem to track the recorded kinematics and ground reaction forces. We found that high upper body forces are required, not only during swing but probably also during double support to compensate for the deceleration of the body during swing, which is due to the pelvic thrust necessary to swing the leg forward. Other simulations showed that upper body forces and body deceleration during swing can be reduced substantially by producing a ballistic swing. Functional neuromuscular stimulation of the hip musculature during double support would then be required, however, to establish the initial conditions needed in a ballistic swing.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3