Evidence-Theory-Based Kinematic Uncertainty Analysis of a Dual Crane System With Epistemic Uncertainty

Author:

Zhou Bin12,Zi Bin12,Zeng Yishan3,Zhu Weidong4

Affiliation:

1. School of Mechanical Engineering, Hefei University of Technology, Hefei 230009, China;

2. Intelligent Interconnected Systems Laboratory of Anhui Province, Hefei University of Technology, Hefei 230009, China

3. School of Mechanical Engineering, Hefei University of Technology, Hefei 230009, China

4. Department of Mechanical Engineering, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250

Abstract

Abstract An evidence-theory-based interval perturbation method (ETIPM) and an evidence-theory-based subinterval perturbation method (ETSPM) are presented for the kinematic uncertainty analysis of a dual cranes system (DCS) with epistemic uncertainty. A multiple evidence variable (MEV) model that consists of evidence variables with focal elements (FEs) and basic probability assignments (BPAs) is constructed. Based on the evidence theory, an evidence-based kinematic equilibrium equation with the MEV model is equivalently transformed to several interval equations. In the ETIPM, the bounds of the luffing angular vector (LAV) with respect to every joint FE are calculated by integrating the first-order Taylor series expansion and interval algorithm. The bounds of the expectation and variance of the LAV and corresponding BPAs are calculated by using the evidence-based uncertainty quantification (UQ) method. In the ETSPM, the subinterval perturbation method (SIPM) is introduced to decompose original FE into several small subintervals. By comparing results yielded by the ETIPM and ETSPM with those by the evidence theory-based Monte Carlo method (ETMCM), numerical examples show that the accuracy and computational time of the ETSPM are higher than those of the ETIPM, and the accuracy of the ETIPM and ETSPM can be significantly improved with the increase of the number of FEs and subintervals.

Funder

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3