Different Passive Viscoelastic Properties Between the Left and Right Ventricles in Healthy Adult Ovine

Author:

Liu Wenqiang1,Nguyen-Truong Michael1,Ahern Matt1,Labus Kevin M.2,Puttlitz Christian M.3,Wang Zhijie4

Affiliation:

1. School of Biomedical Engineering, Colorado State University, 1376 Campus Delivery, Fort Collins, CO 80523

2. Department of Mechanical Engineering, Colorado State University, 1374 Campus Delivery,Fort Collins, CO 80523

3. School of Biomedical Engineering, Colorado State University, 1376 Campus Delivery, Fort Collins, CO 80523; Department of Mechanical Engineering, Colorado State University, 1374 Campus Delivery, Fort Collins, CO 80523; Department of Clinical Sciences, Colorado State University, 1678 Campus Delivery, Fort Collins, CO 80523

4. Department of Mechanical Engineering, Colorado State University, 1374 Campus Delivery, Fort Collins, CO 80523; School of Biomedical Engineering, Colorado State University, 1376 Campus Delivery, Fort Collins, CO 80523; 1301 Campus Delivery, Fort Collins, CO 80523

Abstract

Abstract Ventricle dysfunction is the most common cause of heart failure, which leads to high mortality and morbidity. The mechanical behavior of the ventricle is critical to its physiological function. It is known that the ventricle is anisotropic and viscoelastic. However, the understanding of ventricular viscoelasticity is much less than that of its elasticity. Moreover, the left and right ventricles (LV&RV) are different in embryologic origin, anatomy, and function, but whether they distinguish in viscoelastic properties is unclear. We hypothesized that passive viscoelasticity is different between healthy LVs and RVs. Ex vivo cyclic biaxial tensile mechanical tests (1, 0.1, 0.01 Hz) and stress relaxation (strain of 3, 6, 9, 12, 15%) were performed for ventricles from healthy adult sheep. Outflow track direction was defined as the longitudinal direction. Hysteresis stress–strain loops and stress relaxation curves were obtained to quantify the viscoelastic properties. We found that the RV had more pronounced frequency-dependent viscoelastic changes than the LV. Under the physiological frequency (1 Hz), the LV was more anisotropic in the elasticity and stiffer than the RV in both directions, whereas the RV was more anisotropic in the viscosity and more viscous than the LV in the longitudinal direction. The LV was quasi-linear viscoelastic in the longitudinal but not circumferential direction, and the RV was nonlinear viscoelastic in both directions. This study is the first to investigate passive viscoelastic differences in healthy LVs and RVs, and the findings will deepen the understanding of biomechanical mechanisms of ventricular function.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Reference47 articles.

1. Heart Disease and Stroke Statistics—2008 Update;Circulation,2008

2. Prevention of Heart Failure

3. Biomechanical and Hemodynamic Measures of Right Ventricular Diastolic Function: Translating Tissue Biomechanics to Clinical Relevance;J. Am. Hear. Assoc. Cardiovasc. Cerebrovasc. Dis.,2017

4. Correlations Between the Right Ventricular Passive Elasticity and Organ Function in Adult Ovine;J. Integr. Cardiol.,2020

5. Current Understanding of the Biomechanics of Ventricular Tissues in Heart Failure;Bioengineering,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3