In-Process Monitoring of Material Cross-Contamination Defects in Laser Powder Bed Fusion

Author:

Montazeri Mohammad1,Yavari Reza1,Rao Prahalada2,Boulware Paul3

Affiliation:

1. Mechanical and Materials Engineering Department, University of Nebraska-Lincoln, Lincoln, NE 68516

2. Mechanical and Materials Engineering Department, University of Nebraska-Lincoln, Lincoln, NE 68516 e-mail:

3. Additive Manufacturing, EWI, 1250 Arthur E. Adams Dr., Columbus, OH 43221

Abstract

The goal of this work is to detect the onset of material cross-contamination in laser powder bed fusion (L-PBF) additive manufacturing (AM) process using data from in situ sensors. Material cross-contamination refers to trace foreign materials that may be introduced in the powder feedstock used in the process due to reasons such as poor cleaning of the machine after previous builds or inadequate quality control during production and storage of the powder. Material cross-contamination may lead to deleterious changes in the microstructure of the AM part and consequently affect its functional properties. Accordingly, the objective of this work is to develop and apply a spectral graph theoretic approach to detect the occurrence of material cross-contamination in real-time as the part is being built using in-process sensors. The central hypothesis is that transforming the process signals in the spectral graph domain leads to early and more accurate detection of material cross-contamination in L-PBF compared to the traditional delay-embedded Bon-Jenkins stochastic time series analysis techniques, such as autoregressive (AR) and autoregressive moving average (ARMA) modeling. To test this hypothesis, Inconel alloy 625 (UNS alloy 06625) test parts were made at Edison Welding Institute (EWI) on a custom-built L-PBF apparatus integrated with multiple sensors, including a silicon photodetector (with 300 nm to 1100 nm optical wavelength). During the process, two types of foreign contaminant materials, namely, tungsten and aluminum particulates, under varying degrees of severity were introduced. To detect cross-contamination in the part, the photodetector sensor signatures were monitored hatch-by-hatch in the form of spectral graph transform coefficients. These spectral graph coefficients are subsequently tracked on a Hotelling T2 statistical control chart. Instances of Type II statistical error, i.e., probability of failing to detect the onset of material cross-contamination, were verified against X-ray computed tomography (XCT) scans of the part to be within 5% in the case of aluminum contaminant particles. In contrast, traditional stochastic time series modeling approaches, e.g., ARMA, had corresponding Type II error exceeding 15%. Furthermore, the computation time for the spectral graph approach was found to be less than one millisecond, compared to nearly 100 ms for the traditional time series models tested.

Funder

Directorate for Engineering

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Reference83 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3