Dynamic Response of a Feedback Thermoresistive Electrical Substitution Pyranometer

Author:

Freire R. C. S.1,Deep G. S.1,Lobo P. C.2,Lima A. M. N.3,Rocha Neto J. S.3,Oliveira A.4

Affiliation:

1. Department of Electrical Engineering, Federal University of Paraiba, 58.109-970, Campina Grande, PB, Brazil

2. Department of Mechanical Engineering, Federal School of Engineering—Itajuba 37.500-000 Itajuba, MG, Brazil

3. Department of Electrical Engineering, Federal University of Paraiba, 58.109-970, Campina Grande, PB Brazil

4. Department of Electrical Engineering, Federal University of Bahia, Salvador, BA, Brazil

Abstract

Calorimetric pyranometers use plane black thermal sensors which absorb solar radiation. If a thermoresistive transducer (sensor-detector combination) is used, the temperature measured is nearer the true value than for thermoelectric transducers. More importantly, the measurement of electrical power is much more accurate than the measurement of temperature. In commercial platinum (thermoresistive), thin film thermometers, the substrate produces transducer time constants an order of magnitude larger than for the best thermoelectric transducers. Use of an electronic amplifier with the thermoresistive sensor, forming one arm of a Wheatstone bridge and arranged in a negative feedback configuration, can reduce the overall response time considerably. Theoretical formulations of instrument response, taking into account the amplifier input offset voltage, are presented and the response time is estimated.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Reference11 articles.

1. Beaubien, D. J., Bisberg, A., Beaubien, A. F., and Dichter, B. K., 1994, “A novel total solar pyranometer design,” Eighth Conference on Atmospheric Radiation, p. 188.

2. Coulson, K. L. and Howell, Y., 1975, Solar and Terrestrial Radiation—Methods and Measurements, Academic Press, San Diego, CA.

3. Doebelin, E. O., 1982, Measurement Systems: Applications and Design, McGraw–Hill, New York.

4. Kendall Sr., J. M., Halley, F., and Plamondon, J., 1965, “Cavity type absolute total radiation radiometer,” Twentieth Annual ISA Conference and Exhibition, pp. 1–4.

5. Lima, L. C., and Lobo, P. C., 1988, “An electrically compensated pyranometer with plane sensors,” ASME Solar Energy Conference, ASME, New York, pp. 392–396.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3