An Expermentally Validated Model for Two-Phase Pressure Drop in the Intermittent Flow Regime for Noncircular Microchannels
Author:
Garimella Srinivas1, Killion Jesse D.1, Coleman John W.1
Affiliation:
1. George W. Woodruff School of Mechanical Engineering, Georgia Institue of Technology, Atlanta, GA 30332-0405
Abstract
This paper reports the development of an experimentally validated model for pressure drop during intermittent flow of condensing refrigerant R134a in horizontal, noncircular microchannels. Two-phase pressure drops were measured in six noncircular channels ranging in hydraulic diameter from 0.42 mm to 0.84 mm. The tube shapes included square, rectangular, triangular, barrel-shaped, and others. For each tube under consideration, pressure drop measurements were taken over the entire range of qualities from vapor to liquid at five different refrigerant mass fluxes between 150 kg/m2s and 750 kg/m2s. Results from previous work by the authors were used to select the data that correspond to the intermittent flow regime; generally, these points had qualities less than 25%. The pressure drop model previously developed by the authors for circular microchannels was used as the basis for the model presented in this paper. Using the observed slug/bubble flow pattern for these conditions, the model includes the contributions of the liquid slug, the vapor bubble, and the transitions between the bubble and slugs. A simple correlation for nondimensional unit-cell length was used to estimate the slug frequency. The model successfully predicts the experimentally measured pressure drops for the noncircular tube shapes under consideration with 90% of the predictions within ±28% of the measurements (average error 16.5%), which is shown to be much better than the predictions of other models in the literature. The effects of tube shape on condensation pressure drop are also illustrated in the paper.
Publisher
ASME International
Subject
Mechanical Engineering
Reference22 articles.
1. Coleman, J. W., and Garimella, S., 1999, “Characterization of Two-Phase Flow Patterns in Small Diameter Round and Rectangular Tubes,” Int. J. Heat Mass Transfer, 42(15), pp. 2869–2881. 2. Coleman, J. W., and Garimella, S., 2000, “Visualization of Refrigerant Two-Phase Flow During Condensation,” Proceedings of the 34th National Heat Transfer Conference, ASME, New York. 3. Coleman, J. W., and Garimella, S., 2000, “Two-Phase Flow Regime Transitions in Microchannel Tubes: The Effect of Hydraulic Diameter,” Proc. ASME Heat Transfer Division—2000, ASME, New York, Orlando, FL, HTD-Vol. 366-4, pp. 71–83. 4. Mandhane, J. M., Gregory, G. A., and Aziz, K., 1974, “A Flow Pattern Map for Gas-Liquid Flow in Horizontal Pipes,” Int. J. Multiphase Flow, 1, pp. 537–553. 5. Taitel, Y., and Dukler, A. E., 1976, “A Model for Predicting Flow Regime Transitions in Horizontal and Near Horizontal Gas-Liquid Flow,” AIChE J., 22(1), pp. 47–55.
Cited by
68 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|