An Expermentally Validated Model for Two-Phase Pressure Drop in the Intermittent Flow Regime for Noncircular Microchannels

Author:

Garimella Srinivas1,Killion Jesse D.1,Coleman John W.1

Affiliation:

1. George W. Woodruff School of Mechanical Engineering, Georgia Institue of Technology, Atlanta, GA 30332-0405

Abstract

This paper reports the development of an experimentally validated model for pressure drop during intermittent flow of condensing refrigerant R134a in horizontal, noncircular microchannels. Two-phase pressure drops were measured in six noncircular channels ranging in hydraulic diameter from 0.42 mm to 0.84 mm. The tube shapes included square, rectangular, triangular, barrel-shaped, and others. For each tube under consideration, pressure drop measurements were taken over the entire range of qualities from vapor to liquid at five different refrigerant mass fluxes between 150 kg/m2s and 750 kg/m2s. Results from previous work by the authors were used to select the data that correspond to the intermittent flow regime; generally, these points had qualities less than 25%. The pressure drop model previously developed by the authors for circular microchannels was used as the basis for the model presented in this paper. Using the observed slug/bubble flow pattern for these conditions, the model includes the contributions of the liquid slug, the vapor bubble, and the transitions between the bubble and slugs. A simple correlation for nondimensional unit-cell length was used to estimate the slug frequency. The model successfully predicts the experimentally measured pressure drops for the noncircular tube shapes under consideration with 90% of the predictions within ±28% of the measurements (average error 16.5%), which is shown to be much better than the predictions of other models in the literature. The effects of tube shape on condensation pressure drop are also illustrated in the paper.

Publisher

ASME International

Subject

Mechanical Engineering

Reference22 articles.

1. Coleman, J. W., and Garimella, S., 1999, “Characterization of Two-Phase Flow Patterns in Small Diameter Round and Rectangular Tubes,” Int. J. Heat Mass Transfer, 42(15), pp. 2869–2881.

2. Coleman, J. W., and Garimella, S., 2000, “Visualization of Refrigerant Two-Phase Flow During Condensation,” Proceedings of the 34th National Heat Transfer Conference, ASME, New York.

3. Coleman, J. W., and Garimella, S., 2000, “Two-Phase Flow Regime Transitions in Microchannel Tubes: The Effect of Hydraulic Diameter,” Proc. ASME Heat Transfer Division—2000, ASME, New York, Orlando, FL, HTD-Vol. 366-4, pp. 71–83.

4. Mandhane, J. M., Gregory, G. A., and Aziz, K., 1974, “A Flow Pattern Map for Gas-Liquid Flow in Horizontal Pipes,” Int. J. Multiphase Flow, 1, pp. 537–553.

5. Taitel, Y., and Dukler, A. E., 1976, “A Model for Predicting Flow Regime Transitions in Horizontal and Near Horizontal Gas-Liquid Flow,” AIChE J., 22(1), pp. 47–55.

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3