Finite Element Modeling of the Punch Stretching of Square Plates

Author:

Nakamachi E.1,Sowerby R.2

Affiliation:

1. Yatsushiro National College of Technology, Yatsushiro, Kumamoto, Japan

2. Department of Mechanical Engineering, McMaster University, Hamilton, Ontario, Canada

Abstract

The paper presents an updated Lagrangian-type finite element procedure, formulated with reference to a surface embedded coordinated system. Membrane shell theory is employed, and an attempt is made to calculate the strain distribution incurred by a peripherally clamped square plate, when impressed by a rigid punch. Three different punch geometries were considered. The material is treated as a rate insentive, elastic work-hardening solid, which obeys the J2 flow theory; both finite deformation and normal anisotropy can be considered. A linear relationship between the Jaumann rate of Cauchy stress and the Eulerian rate of Green’s strain tensor is derived. A slip-stick model was adopted for the interfacial frictional conditions. This was achieved by considering the equilibrium of a constant strain-element node in contact with the tools, and deciding whether such a node would stick or slip under Coulomb friction conditions. It is demonstrated that the punch geometry and frictional conditions exert a strong influence on the deformation mode, and hence, upon the overall strain distribution. The predictions were checked against experimental observations when stretch-forming square plates of pure aluminum, 0.5-mm thick. Contours of equal height on the deforming blanks were determined using a Moir´e fringe technique. The agreement between theory and experiment was favorable.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3