Control of Surface Tension Flows: Instability of a Liquid Jet

Author:

Nahas N. M.1,Panton Ronald L.1

Affiliation:

1. Mechanical Engineering Department, University of Texas, Austin, Texas 78712

Abstract

A technique of controlling surface tension flows using thermal radiation is proposed. This method takes advantage of the dependence on temperature of the surface tension forces to produce the desired controlling effects. In this research, a capillary water jet is taken as an example of a surface tension dominated flow. The ability to cancel a preexisting unstable perturbation is demonstrated. First an acoustical disturbance that dominates the naturally occurring perturbations is applied to the jet. This causes jet breakup at a shorter and constant distance from the orifice. Next, a CO2 laser beam, modulated at the same frequency as the primary disturbance, is focused on the surface of the jet. By proper adjustment of intensity and phase the two perturbations cancel each other and the natural breakup of the jet is recovered. The influences of phase and intensity mismatches were tested and are reported. In addition to its application to delaying breakup of capillary jets, this technique is a promising method of controlling both suface tension driven flows and instabilities in different industrial applications.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3