Elastic Analyses of Planar Cracks of Arbitrary Shape

Author:

Guo Quanxin1,Wang Jian-Juei1,Clifton R. J.2,Mertaugh L. J.3

Affiliation:

1. TerraTek, Inc., 420 Wakara Way, Salt Lake City, UT 84108

2. Division of Engineering, Brown University, Providence, RI 02912

3. Naval Air Warfare Center Division, Rotary Wing, RW82H Patuxent River, MD 20670

Abstract

A numerical method is presented for planar cracks of arbitrary shape. The fundamental solution for a dislocation segment is obtained from the point force solution and used to derive three coupled surface integral equations in which the crack-face tractions are expressed in terms of the gradients of the relative crack-surface displacements. Because the singularity of the kernel in the integral equations is one order less for fundamental solutions based on dislocation segments than for those based on dislocation loops or the body force method, no special numerical techniques are required. Most of the integrations over elements are evaluated analytically. The integral equations are solved numerically by covering the crack surface with triangular elements, and taking the relative displacements to vary linearly over the elements. The mesh is generated by optimizing the local aspect ratio, which is related to the difference in the principal stretches of the mapping of a square reference mesh onto the fracture surface. This mesh generator allows cracks of a wide variety of shapes to be analyzed with good accuracy. Comparison with known solutions indicate that accurate numerical solutions are obtained with a relatively coarse mesh.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference24 articles.

1. Bui H. D. , 1977, “An Integral Equations Method for Solving the Problem of a Plane Crack of Arbitrary Shape,” Journal of the Mechanics and Physics of Solids, Vol. 25, pp. 29–39.

2. Clifton, R. J., and Abou-Sayed, A. S., 1981, “A Variational Approach to the Prediction of the Three-Dimensional Geometry of Hydraulic Fractures,” SPE/DOE Paper No. 9879, Proceedings of Low Permeability Symposium, Denver, CO, pp. 457–463.

3. Clifton, R. J., and Wang, J. J., 1991, “Adaptive Optimal Mesh Generator for Hydraulic Fracturing Modeling,” Rock Mechanics as a Multidisciplinary Science, pp. 607–616.

4. Guo, Q., Wang, J. J., and Clifton, R. J., 1995, “Three-Dimensional Analysis of Surface Cracks in an Elastic Half-Space,” submitted to ASME JOURNAL OF APPLIED MECHANICS.

5. Irwin G. R. , 1962, “Crack-Extension Force for a Part-through Crack in a Plate,” ASME JOURNAL OF APPLIED MECHANICS, Vol. 29, pp. 651–654.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3