Development of Friction Drive Transmission

Author:

Ai Xiaolan1,Wilmer Matthew1,Lawrentz David1

Affiliation:

1. The Timken Company

Abstract

A cylindrical friction drive was developed for electric oil pump applications. It was comprised of an outer ring, a sun roller, a loading planet, two supporting planets, and a stationary carrier. The sun roller was set eccentric to the outer ring to generate a wedge gap that facilitates a torque actuated loading mechanism for the friction drive. The loading planet was properly assembled in the wedge gap and elastically supported to the carrier. By altering the stiffness ratio of the elastic support to contact, the actual operating friction coefficient of the friction drive can be changed regardless of the wedge angle to suit for performance requirement. This provided a greater freedom for design and performance optimization. Design analysis was presented and a FE model was developed to quantify design parameters. Prototypes of the friction drive were fabricated and extensive testing was conducted to evaluate its performance. Results indicated the performance of the friction drive far exceeded the design specifications in speed, torque, and power ratings. The friction drive offered a consistent smooth and quiet performance over a wide range of operating conditions. It was capable of operating at an elevated speed of up to 12 000 rpm with adequate thermal characteristics. The friction drive demonstrated a peak efficiency above 97%. Results confirmed that the stiffness of the elastic support has an important impact on performance. The elastic support stiffness, in conjunction with the contact stiffness, determines the actual operating friction coefficient at the frictional contacts.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Reference8 articles.

1. Roller Traction Drive Unit for Extremely Quiet Power Transmission;Hewko;J. Hydronaut.

2. Zhou, R. , 1997, “Traction Drive,” U.S. patent No. 5,688,201.

3. Ai, X., and Rybkoski, T. J., 2000, “Traction Drive Transmission,” U.S. Patent No. 6,095,940.

4. Development of Zero-Spin Planetary Traction Drive Transmission: Part 1–Design and Principles of Performance Calculation;Ai;ASME J. Tribol.

5. Development of Zero-Spin Planetary Traction Drive Transmission: Part 2–Performance Testing and Evaluation;Ai;ASME J. Tribol.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3