Impact of Boundary Condition and Kinetic Parameter Uncertainties on NOx Predictions in Methane–Air Stagnation Flame Experiments

Author:

Durocher Antoine1,Wang Jiayi1,Bourque Gilles23,Bergthorson Jeffrey M.1

Affiliation:

1. Department of Mechanical Engineering, McGill University , Montréal, QC H3A 0C3, Canada

2. Combustion Key Expert Siemens Energy Canada Limited , Montréal, QC H9P 1A5, Canada ; , Montréal, QC H3A 0C3, Canada

3. Department of Mechanical Engineering, McGill University , Montréal, QC H9P 1A5, Canada ; , Montréal, QC H3A 0C3, Canada

Abstract

Abstract A comprehensive understanding of uncertainty sources in experimental measurements is required to develop robust thermochemical models for use in industrial applications. Due to the complexity of the combustion process in gas turbine engines, simpler flames are generally used to study fundamental combustion properties and measure concentrations of important species to validate and improve modeling. Stable, laminar flames have increasingly been used to study nitrogen oxide (NOx) formation in lean-to-rich compositions in low-to-high pressures to assess model predictions and improve accuracy to help develop future low-emissions systems. They allow for nonintrusive diagnostics to measure sub-ppm concentrations of pollutant molecules, as well as important precursors, and provide well-defined boundary conditions to directly compare experiments with simulations. The uncertainties of experimentally measured boundary conditions and the inherent kinetic uncertainties in the nitrogen chemistry are propagated through one-dimensional stagnation flame simulations to quantify the relative importance of the two sources and estimate their impact on predictions. Measurements in lean, stoichiometric, and rich methane–air flames are used to investigate the production pathways active in those conditions. Various spectral expansions are used to develop surrogate models with different levels of accuracy to perform the uncertainty analysis for 15 important reactions in the nitrogen chemistry and the six boundary conditions (ϕ, Tin, uin, du/dzin, Tsurf, P) simultaneously. After estimating the individual parametric contributions, the uncertainty of the boundary conditions are shown to have a relatively small impact on the prediction of NOx compared to kinetic uncertainties in these laboratory experiments. These results show that properly calibrated laminar flame experiments can, not only, provide validation targets for modeling, but also accurate indirect measurements that can later be used to infer individual kinetic rates to improve thermochemical models.

Funder

Fonds de Recherche du Québec - Nature et Technologies

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3